
- 1. Which of the following statements is not true?
 - (A) The resistance of intrinsic semiconductors decreases with increase of temperature.
 - (B) Doping pure Si with trivalent impurities give p-type semiconductors.
 - (C) The majority carriers in n-type semiconductors are holes.
 - (D) A p-n junction can act as a semiconductor diode.
- 2. Two resistive networks are connected through a battery of emf 5V and internal resistance 1Ω , as shown below. The value of R for which the power delivered to the network by the battery will be maximum, is

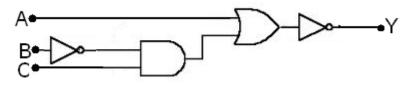
- (A) 1Ω
- (B) 0.5Ω
- (C) 1.2Ω
- (D) 2.4Ω
- **3.** A charged particle is released from rest in a region of constant and uniform electric and magnetic fields. The two fields are parallel to each other. The path of the particle's motion will be a
 - (A) straight line
 - (B) circle
 - (C) helix
 - (D) cycloid
- 4. A particle of charge e and mass m is executing a circular motion with a uniform angular speed ω . If the radius of the circular path be r, the angular momentum be L and magnetic moment due to circular loop be μ , then
 - (A) the current flowing in the circular path is proportional to the area of the loop
 - (B) L is proportional to the areal velocity
 - (C) the ratio of μ/L is in inversely proportional to the specific charge of the particle
 - (D) µ is proportional to m

- 5. A moving coil galvanometer has a resistance of $100~\Omega$ and shows full-scale deflection at a current of $100~\mu A$. The galvanometer has to be used as an ammeter in the range of 0–100~mA so that 100~mA is the full-scale deflection current. A resistance R has to be connected in parallel. Then
 - (A) the value of R needed should be 1.0Ω
 - (B) when this ammeter measures 100 mA, the current flowing in galvanometer is 40 μA
 - (C) for higher current measurement, value of R should be larger than the present value of R
 - (D) this new ammeter cannot measure –100 mA
- 6. An object is moving away from a vertical concave mirror of focal length 25 m. When the distance of the object is 100 m, the velocity of the object is 5 m/s and it accelerates at 2 m/s². The distance of the object from the image after 5 sec is
 - (A) 300 m
 - (B) 120 m
 - (C) 150 m
 - (D) 90 m
- 7. An electrostatic field $\overrightarrow{E} = \hat{i} + 2\hat{j} + 3\hat{k}$ passes through the surface $\overrightarrow{A} = 30\hat{j}$. The electric flux coming through the surface is
 - (A) 30 unit
 - (B) 90 unit
 - (C) 60 unit
 - (D) 120 unit
- **8.** A given quantity of an ideal gas is at pressure P and absolute temperature T. The isothermal bulk modulus of the gas is
 - (A) 2P/3
 - (B) P
 - (C) 3P/2
 - (D) 2P
- 9. The current amplification factor of a transistor α is 0.9. The transistor is biased in a common-base configuration. In this connection, when the base current changes by 4 mA, the change in collector current is
 - (A) 4.44 mA
 - (B) 40 mA
 - (C) 36 mA
 - (D) 24 mA

along the horizontal diameter and the two halves are kept 2 mm apart symmetrically about the optical axis as shown in the figure. A monochromatic point source of light is now placed at a distance 10 cm on the optical axis. Then which of the following statements is/are correct?

- (A) The rays emerging from each lens-half will be converging to a point on the optical axis at a distance of 5 cm from the lens-halves.
- (B) The rays emerging from each lens-half will be parallel making an angle of 10^{-2} radian with the optical axis.
- (C) Rays from each lens-half will be diverging as if the source is on the optic axis at a distance of 10/3 cm behind the lens-halves.
- (D) The rays emerging from the upper lens-half will appear to come from a point 10/3 cm behind the lens-halves and 3 mm below the optical axis.
- 11. An infinitely long straight conductor has a circular loop of radius R meter. If a current I ampere flows through the conductor, then the magnetic induction at the centre of the circular loop is
 - $(A) \quad \frac{\mu_0}{4\pi} \; \frac{2I}{R(\pi+1)} \;\; Tesla$
 - (B) $\frac{\mu_0}{4\pi} \frac{2I}{R}$ Tesla
 - (C) $\frac{\mu_0}{4\pi} \frac{2I}{R(\pi-1)}$ Tesla
 - (D) Zero
- 12. Energy liberated per fission is about 200 MeV of $_{92}U^{235}$ nuclei. A fission reactor of power 1 MW consumes a mass x of $_{92}U^{235}$ per day. Here x is equal to
 - (A) 1 gm
 - (B) 10 gm
 - (C) 1 kg
 - (D) 10 kg

- 13. A free electron has a wave function $\psi(x, t) = \sin(kx \omega t)$. Given that $h = 6.626 \times 10^{-34}$ J-s, when $k = 50 \text{ nm}^{-1}$, the momentum of the electron in kg-m/s is
 - (A) 5.26×10^{-22}
 - (B) 2.62×10^{-32}
 - (C) 1.26×10^{-12}
 - (D) 6.62×10^{-24}
- **14.** A non-conducting solid sphere of radius R is uniformly charged. At a distance r from the centre of the sphere the electric field (magnitude) due to sphere
 - (A) $E \propto 1/r^2$ for r < R (inside sphere)
 - (B) $E \propto 1/r^2$ for $0 < r < \infty$ (everywhere except centre)
 - (C) $E \propto 1/r^2$ for $R < r < \infty$ (outside sphere)
 - (D) E=0 at r=R (at the surface)
- **15.** The ground state wave function associated with a particle in a potential box of width L (i.e., x = 0 to x = L) is given by
 - (A) $\sqrt{(2/L)} \sin \left[(x/L) \right]$
 - (B) $\sqrt{(2/L)} \cos [(x/2L)]$
 - (C) $\sqrt{(2/L)} \sin [2(x/L)]$
 - (D) $\sqrt{(2/L)}\cos[2(x/L)]$
- 16. A circular loop of copper wire has a radius r and mass m. The loop is at rest on flat table in the horizontal plane xy. The earth's magnetic field at this point is $\hat{i} B_x + \hat{k} B_z$. When a current I flows through the loop, the loop starts tilting. The minimum value of current is
 - (A) $\frac{\text{mg}}{\pi r B_{\chi}}$
 - (B) $\frac{mg}{\pi r \sqrt{B_x^2 + B_z^2}}$
 - (C) $\frac{\text{mg}}{\pi r \sqrt{B_{\chi} B_{\chi}}}$
 - (D) $\frac{\text{mg}}{\pi r B_Z}$


- 17. A hydrogen atom is in its nth excited state. The magnetic moment due to the electron of this excited hydrogen atom is
 - (A) $\frac{\text{neh}}{2\text{m}}$
 - (B) $\frac{\text{meh}}{2n}$
 - (C) $\frac{\text{neh}}{2\pi \text{m}}$
 - (D) $\frac{\text{meh}}{2\pi n}$
- 18. 5.0 kg of steam at 200° C is kept in a frictionless piston-cylinder based container at a pressure of 400 kPa. Heat is transferred to steam at constant pressure in a quasi-static process till the temperature reaches 250° C. Assume the specific volumes of steam at 200° C and 250° C as 0.53434 m³/kg and 0.59520 m³/kg respectively. The work done by the steam is then
 - (A) 121.7 kJ
 - (B) -55.3 kJ
 - (C) 30.4 kJ
 - (D) -53.5 kJ
- **19.** A plane diffraction grating has 100 lines per mm. The grating is illuminated by sodium light of wavelength 5890Å. The number of orders that will be visible is
 - (A) 6
 - (B) 12
 - (C) 10
 - (D) 16
- **20.** The electric fields of two electromagnetic waves in a certain region are $E_1 = E_0 e^{ik\left(\frac{\sqrt{3}}{2}x + \frac{1}{2}y\right)}$

and $E_2 = E_0 e^{ik(\frac{1}{2}x + \frac{\sqrt{3}}{2}y)}$ respectively. The angle between these electromagnetic fields is

- (A) 60°
- (B) 30°
- (C) 45°
- (D) 120°

- 21. A charged particle is thrown in a uniform magnetic field of flux density 1.5 Wb/m 2 with a speed of 2 \times 10 7 m/sec making an angle of 30 $^\circ$ with the direction of field. The particle experiences a force equal to
 - (A) $1.2 \times 10^{12} \text{ N}$
 - (B) $2.4 \times 10^{12} \text{ N}$
 - (C) $12 \times 10^{12} \text{ N}$
 - (D) $24 \times 10^{12} \text{ N}$
- 22. The differential equation describing the oscillation of a particle is given by $2\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 12x = 0$. The oscillation of the particle is
 - (A) underdamped
 - (B) critically damped
 - (C) overdamped
 - (D) free SHM
- 23. The electric field of an electromagnetic wave is given by
 - = $E_0 \cos(kz ct)\hat{x} + E_0 \sin(kz ct)\hat{y}$. The wave is
 - (A) elliptically polarized
 - (B) left circularly polarized
 - (C) linearly polarized
 - (D) right circularly polarized
- 24. A thermal neutron has a speed v at temperature T=300K and kinetic energy given by $\frac{m_n v^2}{2} = \frac{3kT}{2}$. Take mass of neutron as $m_n = 1.67 \times 10^{-27}$ kg and $k = 1.38 \times 10^{-23}$ m²kgs⁻²K⁻¹. The de-Broglie wavelength associated with this neutron is
 - (A) 32 pm
 - (B) 23.3 pm
 - (C) 14 pm
 - (D) 1.22 pm
- 25. In a Young's double-slit experiment using a monochromatic light of wavelength 488 nm, the separation between the slits is 0.320 mm and interference fringes are formed on the screen. How many interference fringes will be observed in the angular range of $-30^{\circ} < \theta < +30^{\circ}$? Here θ is measured from the direction of the central fringe.
 - (A) 321
 - (B) 231
 - (C) 655
 - (D) 565

- **26.** The radii of two soap bubbles are r and 2r respectively. The excess pressures inside the bubbles are in the ratio
 - (A) 2:1
 - (B) 1:4
 - (C) 4:1
 - (D) 1:2
- 27. The dimension of a quantity is given by $ML^2T^{-2}I^{-2}$, where M is mass, L is length, T is time, and I is electric current. Which of the following quantities has this dimension?
 - (A) Capacitor
 - (B) Inductance
 - (C) Magnetic Flux
 - (D) Electric Flux
- **28.** In a hydrogen atom, radius of the first Bohr orbit of electron is 5.3×10^{-11} m. The de Broglie wavelength associated with this electron is then
 - (A) 3.3×10^{-11} m
 - (B) $33 \times 10^{-11} \text{ m}$
 - (C) $6.62 \times 10^{-13} \text{ m}$
 - (D) $66.2 \times 10^{-13} \text{ m}$
- **29.** The output of the logic gate is

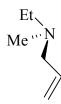
- (A) $\overline{A} + \overline{B \cdot C}$
- (B) $\overline{A + B \cdot C}$
- (C) $A + \overline{B} \cdot C$
- (D) $\overline{A + \overline{B} \cdot C}$
- 30. What is the minimum thickness of a soap bubble needed for constructive interference in reflected light, if the light incident on the film is 750 nm? Assume that the refractive index of the film is n = 4/3.
 - (A) 140.6 nm
 - (B) 281.2 nm
 - (C) 70.3 nm
 - (D) 210.9 nm

- 31. For an ideal gas the Joule-Thomson coefficient will be
 - (A) > 0
 - (B) 0
 - (C) < 0
 - (D) cannot be predicted.
- **32.** Entropy is a measure of
 - (A) randomness
 - (B) orderliness
 - (C) reactivity
 - (D) feasibility
- **33.** The efficiency of a Carnot engine would be unity when
 - (A) the sink temperature is 0 °C
 - (B) the source temperature is 1000 °C
 - (C) the sink temperature is 0 K
 - (D) the source temperature is 100000 K
- **34.** Free energy change, $\Delta G=0$ when
 - (A) catalyst is added
 - (B) the system is under equilibrium
 - (C) reactants are completely consumed
 - (D) reactants are initially mixed thoroughly.
- **35.** Given the following notation for an electrochemical cell:

$$Pt(s) | H_2(g) | H^+(aq) || Ag^+(aq) | Ag(s)$$

Which of the following represents the overall balanced (net) cell reaction?

- (A) $H_2(g) + Ag^+(aq) \to 2H^+(aq) + Ag(s)$
- (B) $H_2(g)+Ag(s) \rightarrow H^+(aq) +Ag^+(aq)$
- (C) $Ag(s) + H^{+}(aq) \rightarrow Ag^{+}(aq) + H_{2}(g)$
- (D) None of these


- **36.** The structure of heteropolyacid ammonium phosphomolybdate contains
 - (A) one tetrahedral and twelve octahedral units
 - (B) twelve tetrahedral and one octahedral units
 - (C) four tetrahedral and seven octahedral units
 - (D) seven tetrahedral and six octahedral units
- 37. The atoms in BF_4^- ion supply
 - (A) 32 valence electrons
 - (B) 31 valence electrons
 - (C) 41 valence electrons
 - (D) 36 valence electrons
- **38.** The ground state configuration of CO is
 - (A) $1\sigma^2 1\pi^2 2\pi^4 2\sigma^2$
 - (B) $1\sigma^2 2\sigma^2 3\sigma^4 1\pi^2$
 - (C) $1\sigma^2 2\sigma^2 1\pi^4 3\sigma^2$
 - (D) $1\sigma^2 2\sigma^2 1\pi^2 3\sigma^4$
- 39. The reaction of BCl₃ with excess NaCl in acidic aqueous solution gives
 - (A) BCl₄⁻ and Na⁺
 - (B) BOCl₂ and HCl
 - (C) H₃BO₃ and NaOCl
 - (D) H₃BO₃ and HCl
- **40.** Amongst the following VO, V₂O₃, VO₂, V₂O₅, Cr₂O₃ and CrO₃ the pair of amphoteric oxides is
 - (A) VO, Cr_2O_3
 - (B) V_2O_3 , Cr_2O_3
 - (C) VO_2 , Cr_2O_3
 - (D) V_2O_5 , CrO_3

- **41.** The ground state electronic configuration of the Ti^{3+} is
 - (A) $[Ar]3d^2$
 - (B) $[Ar]3d^1$
 - (C) $[Ne]3d^9$
 - (D) $[Ar]4s^23d^1$
- 42. Reaction of fluorapetite with conc. H₂SO₄ gives
 - (A) P₄, CaSiO₃ and HF
 - (B) H₃PO₄, CaSO₄ and CaF₂
 - (C) H₃PO₄, CaSO₄ and HF
 - (D) H₄P₂O₇, CaSO₄ and HF
- **43.** The average N-O bond length and O-N-O angle in NO_2^- are, respectively
 - (A) 1.15 Å, 180°
 - (B) $1.24 \text{ Å}, 120^{\circ}$
 - (C) 1.12 Å, 115°
 - (D) 1.24 Å, 115°
- **44.** Conc. HNO₃ is yellow in colour due to the presence of
 - (A) NO₂
 - (B) NO
 - (C) N₂O
 - (D) N_2O_5
- **45.** At 250 °C molten NH₄NO₃ gives
 - (A) NO and H₂O
 - (B) N₂O and H₂O
 - (C) N₂O and H₂O₂
 - (D) NO₂ and H₂O

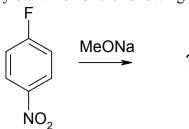
46. Predict the absolute configuration for the following compound

- (A) 2S, 3R
- (B) 2S, 3S
- (C) 2R, 3R
- (D) 2R, 3S

47. The following compound cannot be resolved mainly due to the fact that

- (A) The compound is not chiral
- (B) Rapid interconversion between the enantiomers take place
- (C) The compound is liquid in nature
- (D) None of the above

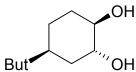
48. Predict the correct order of affinity towards electrophilic substitution reaction of the following substrates :


- (A) IV > III > I > II
- (B) III > IV > I > II
- (C) IV > I > III > II
- (D) I > II > III > IV

49. Predict the correct order of affinity towards nucleophilic substitution (S_N^{-1}) reaction of the following substrates :

- $(A) \quad II > I > IV > III$
- (B) III > IV > II > I
- (C) IV > III > I > II
- (D) I > III > IV > II
- **50.** An aliphatic carbonyl compound (Mw = 86) gives a pair of oximes (with NH₂OH) which could be reduced to an amine that is resolvable, what is the correct structure of the parent carbonyl compound?

- **51.** Reimer-Tiemann reaction of phenol involves the formation of which of the following intermediate?
 - (A) Dichlorocarbene
 - (B) Trichlorocarbene
 - (C) Trichloromethane
 - (D) Nitrene


52. The following reaction will yield which of the following product?

- (A) o-Nitroanisole
- (B) m-Nitroanisole
- (C) p-Nitroanisole
- (D) None of the above
- **53.** What would be the double bond geometry in the following compound?

- (A) Z
- (B) E
- (C) E, Z
- (D) None of the above
- 54. The following diol cannot be cleaved by periodic acid mainly due to

- (A) Both the OH groups are in equatorial position
- (B) Both the OH groups are in axial position
- (C) One of the OH group is in equatorial position and another is in axial position
- (D) None of the above
- 55. The number of gauche-butane interaction present in *cis*-1,2-dimethyl cyclohexane is
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) None of the above

		Space for Rough Work		
	(D)	(3/2)RT		
	(C)	(7/2)RT		
	(B)	(5/2)RT		
	(A)	4RT		
60.		internal energy of one mole of an ideal gas is		
	(D)			
	(C) (D)	acetone (l)		
	(B) (C)	toluene (l) diethyl ether (l)		
	(A)	water (l)		
59.		ch of the following has maximum entropy of vapourisation?		
5 0	W 71-:	sh of the following has maximum entropy of versuring tion ?		
	(D)	3		
	(C)	2		
	(B)	1		
	(A)	- ·		
58.	In a condensed system having a single-component, if the degree of freedom is zero, maximum number of co-existing phases will be			
	(D)	Solid solubility limits are depicted by the phase diagram.		
	(C)	Phase diagram indicates the temperature at which different phases start to melt.		
	(B)	Phase diagram indicates the relative amounts of different phases that can be found under given equilibrium conditions.		
	(A)	Phase diagram provides information on the transformation rates.		
57.	Whi	ch of the following is false?		
	(D)	The potential energy of the products decreases.		
	(C)	The potential energy of the reactants decreases.		
	(B)	The reaction follows an alternative pathway of lower activation energy.		
	(A)	The heat of reaction decreases.		
56.	Wha	t happens when a catalyst is added to a system at equilibrium?		

61.	The	type of pollination performed by butterflies is known as
	(A)	Cantharophily
	(B)	Psychophily
	(C)	Phalaenophily
	(D)	Myrmecophily
62.	Whie	ch of the following is the most popular approach for delivering gene therapy?
	(A)	Bacterial vectors
	(B)	Naked DNA
	(C)	Liposomes
	(D)	Viral vectors
63.	Amo	ong the extant gymnosperms, the longest archegonial neck is found in
	(A)	Cycas
	(B)	Pinus
	(C)	Ephedra
	(D)	Ginkgo
64.	Wha	t can liposome do that other methods for delivering genes cannot?
	(A)	Liposomes have no other function than delivering DNA.
	(B)	Liposomes can deliver proteins to cells, such as tumour-necrosis factor.
	(C)	Liposomes can degrade extracellular DNA.
	(D)	Liposomes can only deliver DNA to specific cells.
65.	Palea	a is a part of following inflorescence:
	(A)	Spadix
	(B)	Spike
	(C)	Spikelet
	(D)	Capitulum
		Space for Rough Work

66. Which of the following combinations is <u>not correct</u>?

Column 'A' (Diagnostic feature)	Column 'B' (Family)
(a) Pollinia	(i) Poaceae
(b) gynobasic style	(ii) Lamiaceae
(c) obliquely placed ovary	(iii) Solanaceae
(d) cruciform corolla	(iv) Brassicaceae

- (A) (a) (i)
- (B) (b) (ii)
- (C) (c) (iii)
- (D) (d) (iv)

67. Morphologically distinct form within a species produced by natural selection is known as

- (A) Ecotype
- (B) Ecocline
- (C) Ecad
- (D) Ecotone

68. Anneau initial is associated with

- (A) Root apical meristem of angiosperms
- (B) Shoot apical meristem of angiosperms
- (C) Shoot apical meristems of gymnosperms
- (D) Shoot apical meristem of pteridophytes

69. For successful completion of which of the following type of genetic recombinations found in bacteria 'competence factor' is required?

- (A) Conjugation
- (B) Transduction
- (C) Transformation
- (D) Binary fission

70.	A no	ormal chromosome has the following gene sequence:
	<u>A</u>	B C D E F G H . Determine the chromosomal aberration /mutation
		trated by the following chromosomes:
	(a)	A B C F E D G H and (b) A D E F B C G H
	(A)	Paracentric inversion and tandem duplication respectively.
	(B)	Duplication and reciprocal translocation respectively.
	(C)	Reciprocal translocation and paracentric inversion respectively.
	(D)	Pericentric inversion and non-reciprocal translocation respectively.
71.		osylase is a repair enzyme of DNA damage. In which of the following types of DNA ir is it involved?
	(A)	Nucleotide excision repair
	(B)	Base excision repair
	(C)	UV-induced pyrimidine dimers
	(D)	Methyl-directed mismatch repair
72.	Duri	ng translation, peptide bond formation is catalyzed by
	(A)	EF-G
	(B)	Aminoacyl-tRNA synthetase
	(C)	Peptidyl tranferase
	(D)	Transformylase
73.	Telo	merase is a type of
	(A)	Reverse transcriptase enzyme
	(B)	Ligase enzyme
	(C)	DNA polymerase enzyme
	(D)	RNA dependent RNA polymerase enzyme
		Space for Rough Work

74. Which of the following is an example of "repetitive DNA" as well as "Tra Eukaryotes?		ch of the following is an example of "repetitive DNA" as well as "Transposon" in ryotes?
	(A)	Tn 3.
	(B)	Ac-Ds.
	(C)	P elements.
	(D)	LINES.
75.	be th	ose chromosome number of endosperm cells in <i>Arabidopsis thaliana</i> is 15. What will ne chromosome number in a cell of this plant which has undergone nullisomic tion?
	(A)	8
	(B)	13
	(C)	12
	(D)	17
76.		ch of the following statements regarding extra-chromosomal eukaryotic genomes is rect?
	(A)	The DNA molecules residing in mitochondria and chloroplasts are devoid of histones.
	(B)	These genomes are circular and comparable to viral genome regarding size.
	(C)	Chloroplast genome encodes both subunits of rubisco.
	(D)	Most polypeptides encoded by mitochondrial or chloroplast genomes are components of multimeric proteins that also contain subunits encoded by the nuclear genome.
		Space for Rough Work

77. Which of the following is correct matching of an organelles and its respective function?

	P(Organelles)		Q(Function)
(a)	Peroxisome	(i)	Generate fat from carbohydrates in fat storing seeds.
(b)	Smooth endoplasmic reticulum	(ii)	Synthesis of cholesterol and lipids.
(c)	Golgi complex	(iii)	Initiation of glycosylation of protein.
(d)	Mitochondria	(iv)	Reduction of fat molecules.

- (A) (a) (i)
- (B) (b) (ii)
- (C) (c) (iii)
- (D) (d) (iv)

78. Which statement about enzyme inhibition is not true?

- (A) A competitive inhibitor binds the active site of the enzyme.
- (B) An allosteric inhibitor binds a site on the active form of the enzyme.
- (C) Noncompetitive inhibition cannot be completely overcome by the addition of more substrate.
- (D) Competitive inhibition can be completely overcome by the addition of more substrate.

79. Most plant cells display a cyanide-resistant respiration. The enzyme responsible for this cyanide resistant respiration is

- (A) Rotenone-insensitive dehydrogenase
- (B) UC P-1
- (C) SHAM
- (D) Ubiquinol oxidase or alternative oxidase.

80.	In pl	ants fatty acids are synthesized exclusively in the
	(A)	Cytosol
	(B)	Mitochondria
	(C)	Plastids
	(D)	ER
81.	into	t roots actively absorb nitrate from the soil and assimilate most of this nitrate initially nitrite in the cytosol involving transfer of 2 electrons. The Molybdenum dependent me that catalyzes this reaction is
	(A)	Nitrogenase
	(B)	GOGAT
	(C)	Nitrite reductase
	(D)	Nitrate reductase
82.	Cho	ose the correct sequence of taxonomic ranks of land plants in descending order:
	(A)	Tribe – Section – Genus – Species – Variety
	(B)	Tribe – Genus – Section – Species – Variety
	(C)	Variety – Section – Tribe – Genus – Species
	(D)	Variety – Tribe – Section – Genus - Species
83.	The	complete oxidation of sucrose molecule by aerobic respiration yields about
	(A)	38 molecules of ATP.
	(B)	52 molecules of ATP.
	(C)	60 molecules of ATP.
	(D)	48 molecules of ATP.

84. Match column "A" and column "B" and identify the incorrect match:

'A'-Name of the receptor	'B'- .	Absorbance and specific role
P _r	(1)	660 nm, seed germination, flowering
P_{fr}	(2)	735 nm, seed germination, flowering
Cryptochrome	(3)	475 nm, P _r to P _{fr} conversion, shade avoidance
Phototropin	(4)	320-400 nm, phototropic responses, or differential growth in a light gradient.

- (A) $P_r \longrightarrow (1)$
- (B) $P_{fr} \longrightarrow (2)$
- (C) cryptochrome \longrightarrow (3)
- (D) phototropins \longrightarrow (4)
- 85. Which of the following is an important physiological function of the plant hormone ABA?
 - (A) Prohibiting precocious germination and promoting dormancy in seeds
 - (B) Inducing stomatal opening and desiccation
 - (C) Initiation of primary root and homophylly
 - (D) Functions as an anti-senescent hormone
- **86.** In which of the following sequences photorespiratory processes in plants begins and ends up in the oraganelles?
 - (A) Chloroplast → Mitochondrion → Peroxisome
 - (B) Chloroplast Peroxisome Mitochondrion
 - (C) Mitochondrion Peroxisome Chloroplast
 - (D) Mitochondrion Chloroplast Peroxisome

Space for Rough Work

87.	Whi	ch of the following vector holds the largest pieces of DNA?
	(A)	Plasmids
	(B)	Bacteriophage
	(C)	YACs
	(D)	PACs
88.	Whi	ch of the following statements about gene libraries is correct?
	(A)	Genes in a library can be compared to genes from other organisms by hybridization with a probe.
	(B)	Every gene in the library must be sequenced first in order to compare genes in the library to genes from other organisms.
	(C)	A gene library is only necessary to maintain known genes.
	(D)	Gene libraries can only be created for eukaryotic organisms.
89.		uplicate specimen of the holotype collected at the same time by the same person from same population is known as
	(A)	Lectotype
	(B)	Paratype
	(C)	Isotype
	(D)	Neotype
90.	Wha	at is DNA coated onto when transforming plant cells with a particle gun?
	(A)	Silver
	(B)	Aluminium
	(C)	Helium
	(D)	Gold
		Space for Rough Work

91.	Fang	s of snakes are modified		
	(A)	Canines		
	(B)	Maxillary teeth		
	(C)	Incisors		
	(D)	None of the above		
92.	Wha	t is correct for test tube babies ?		
	(A)	Fertilization is external and foetus formation is internal		
	(B)	Fertilization is internal and foetus formation is external		
	(C)	Fertilization and foetus formation are external		
	(D)	Fertilization and foetus formation are internal		
93.	In which of the following do four pulmonary veins open by a common aperture in the left auricle?			
	(A)	Frogs		
	(B)	Lizards		
	(C)	Pigeons		
	(D)	All of these		
94.	Whi	ch one of the following statements is NOT correct?		
	(A)	A malignant tumor is cancer.		
	(B)	Cyst and polyps are malignant tumors.		
	(C)	Benign tumor is not cancer.		
	(D)	Cancer is a genetic disease but it is rarely inherited.		
95.	Amo	ong Echinoderms, light producing cells are found only in		
	(A)	Asteroids		
	(B)	Holothuroids		
	(C)	Echinoids		
	(D)	Ophiuroids		
		C C D LW L		

96.	Coel	om is formed by the
	(A)	Ectoderm
	(B)	Endoderm
	(C)	Mesoderm
	(D)	Both ectoderm and mesoderm
97.	Red	coral is
	(A)	Alcyonium
	(B)	Tubipora
	(C)	Meandrina
	(D)	Corallium
98.	Infec	ctive stage of a liver fluke is the
	(A)	Miracidium
	(B)	Cercaria
	(C)	Metacercaria
	(D)	Redia
99.	In th	e life cycle of plasmodium, all stages are haploid except
	(A)	Oocyst
	(B)	Schizont
	(C)	Merozoite
	(D)	Sporozoite
		Space for Rough Work

100.	The	correct sequence of developmental stages of Ascaris in human is		
	(A)	Outside – stomach – liver spleen – lung – intestine – outside		
	(B)	Outside – trachea – lung – liver – intestine – outside		
	(C)	Outside – trachea – lung – heart – liver – intestine – outside		
	(D)	Outside – intestine – liver – heart – lung – intestine – outside		
101.	Taen	ciasolium passes to the secondary host at the stage of		
	(A)	Cysticerus		
	(B)	Hexacanth		
	(C)	Bladder worm		
	(D)	Mracidium		
102.	During the course of origin of life			
	(A)	RNA was first evolved and from RNA, DNA was evolved by reverse transcription.		
	(B)	DNA was first evolved.		
	(C)	DNA was first evolved and from DNA, RNA was evolved possibly by transcription.		
	(D)	Both DNA and RNA evolved at the same time.		
103.	Whic	ch one of the following enzymes destroys H_2O_2 ?		
	(A)	D-aminooxidase		
	(B)	Urate oxidase		
	(C)	Catalase		
	(D)	α-hydroxylic acid oxidase		
104.	The 1	process in which cells play an active role in their own death is known as		
	(A)	Apolysis		
	(B)	Autolysis		
	(C)	Necrosis		

(D) Apoptosis

	(A)	Heard bony ridges in the beak
	(B)	Pebble in the gizzard
	(C)	An extremely mascular esophagus
	(D)	The normal bird diet does not require grinding for digestion.
106.	A ma	an has increased BMR, heartbeat, blood pressure and bulged eyes. These symptoms are
	(A)	Gull's disease
	(B)	Addision's disease
	(C)	Cushing's syndrome
	(D)	Grave's disease
107.	7. Mitochondria are absent in human	
	(A)	Liver cells
	(B)	Brain cells
	(C)	Erythrocytes
	(D)	Osteoblasts
108.	Whi	ch one of the following is not in eukaryotes ?
		Lysosome
	(B)	Ribosome
	(C)	Peroxisome
	(D)	Mesosome
		Space for Rough Work

105. For birds, what replaces the action of teeth in grinding up food?

109.	Which one of the following is responsible for speciation?						
	(A)	Natural selection					
	(B)	Mutation					
	(C)	Reproductive isolation					
	(D)	Random mating					
110.	The connecting link between Echinoderms and chordates is						
	(A)	Oikopleura					
	(B)	Archaeopteryx					
	(C)	Balanoglossus					
	(D)	Antedon					
111.	Anadromous fish migrates from						
	(A)	Estuary to river					
	(B)	Sea to river					
	(C)	River to sea					
	(D)	Sea to river					
112.	Islets	of Langerhans secrete					
	(A)	Insulin, secretion and renin					
	(B)	Insulin, glucagon and renin					
	(C)	Insulin and glucagon					
	(D)	Insulin, glucagon and epinephrine					
	Space for Rough Work						

113.	Which one of the following is NOT correct for birds?					
	(A)	Presence of diaphragm				
	(B)	Presence of Sinus venous				
	(C)	Homiothermy				
	(D)	Presence of four-chambered heart				
114. In which one of the following groups notochord is only present during development?						
	(A)	Cephalochordata				
	(B)	Hemichordata				
	(C)	Agnatha				
	(D)	Gnathostomata				
115.	Whe	n chromosome condensation and microtubules formation begins in the meiosis?				
	(A)	G1 phase				
	(B)	S phase				
	(C)	G2 phase				
	(D)	Prophase				
116.	Fora	men of Panizza is found in the heart of				
	(A)	Phrynosoma				
	(B)	Crocodile				
	(C)	Sphenodon				
	(D)	Birds				
	Space for Rough Work					

	(A)	A bulbusarteriosus is present.				
	(B)	A conusarteriosus is present.				
	(C)	A spiral valve is present in conusarteriosus.				
	(D)	Ventral aorta is short.				
118.	The	protein present in the arms of microtubules is				
	(A)	Nexin				
	(B)	Dynein				
	(C)	Desmin				
	(D)	Vimentin				
119.	Matı	uration of sperms occurs in				
	(A)	Seminiferous tubules				
	(B)	Vas deferens				
	(C)	Seminal vesicles				
	(D)	Epididymis				
120.	Male	e Ascaris can be distinguished from female by the presence of				
	(A)	Oral suckers				
	(B)	Lips				
	(C)	Curved Posterior end with a pair of pineal setae				
	(D)	Blunt posterior end				
						
		Space for Rough Work				
	Spino to Longi Hori					

117. The heart of teleosts is similar to that of cartilaginous fishes, except